Synthesis of bridged azabicyclic compounds using radical translocation reactions of 1-(o-bromobenzoyl)-2-(prop-2-enyl)pyrrolidines

Tatsunori Sato, Yasuhiro Kugo, Erina Nakaumi, Hiroyuki Ishibashi and Masazumi Ikeda*
Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607, Japan

Abstract

A new synthesis of the 7 -azabicyclo[2.2.1]heptane and 8 -azabicyclo[3.2.1]octane systems is described in which α-acylamino radicals generated from 1-(o-bromobenzoyl)-2-(prop-2-enyl)pyrrolidines by a $\mathrm{Bu}_{3} \mathrm{SnH}$-mediated radical translocation reaction are cyclised. Treatment of methyl 1-(o-bromobenzoyl)-2-(prop-2-enyl)pyrrolidine-2-carboxylate 3 a with $\mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of a catalytic amount of azoisobutyronitrile in boiling toluene gave the 7 -azabicyclo[2.2.1]heptane 4 a (a 5 -exo cyclisation product) [42% yield as a diastereoisomeric mixture ($66: 34$)] and the 8 -azabicyclo[3.2.1]octane 5 a (a 6 -endo product) (30%), together with the reduction product $6 a(12 \%)$. The regiochemistry (5 -exo/6-endo) of this cyclisation could be controlled by the introduction of a substituent on the prop-2-enyl group. The substituent(s) at the 2- and/or 4-position(s) of the pyrrolidine ring were found to play an important role in this cyclisation.

α-Acylamino radicals have been widely used for the construction of a variety of the nitrogen-containing heterocycles. ${ }^{1,2}$ In general, the radicals can be generated either by the tin hydride method from functionalised acylamino derivatives ${ }^{1}$ or by a radical translocation reaction of aryl radicals generated from o-halogenobenzamides ${ }^{2}$ and related compounds. ${ }^{3,4}$ We report here a new route to the 7 -azabicyclo[2.2.1]heptane and 8 azabicyclo[3.2.1]octane systems by cyclisation of α-acylamino radicals ${ }^{5}$ generated from 1-(o-bromobenzoyl)-2-(prop-2enyl)pyrrolidines 3 by the latter method. ${ }^{6}$

Results and discussion

The radical precursors 3a-e were prepared by the alkylation of methyl 1-(o-bromobenzoyl)pyrrolidine-2-carboxylate 2 which, in turn, was prepared from L-proline 1 in two steps in quantitative yield. ${ }^{7}$

Scheme 1 Reagents and conditions: i, $\mathrm{MeOH}, \mathrm{SOCl}_{2}$, reflux; ii, o-bromobenzoyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, (TMS) ${ }_{2} \mathrm{NLi}$, THF, $-78^{\circ} \mathrm{C}$, and then $\mathrm{R}^{2} \mathrm{CH}=\mathrm{CR}^{1} \mathrm{CH}_{2} \mathrm{X}$

A toluene solution of tributyltin hydride $\left(\mathrm{Bu}_{3} \mathrm{SnH}\right)(1.3 \mathrm{~mol}$ equiv.) and a catalytic amount of azoisobutyronitrile (AIBN) (0.1 mol equiv.) was added slowly to a boiling solution of 3 a in toluene over a period of 2 h , and the mixture was refluxed for 5 h . To complete the reaction, the same procedure was repeated. The crude material was chromatographed on silica gel to give 7-azabicyclo[2.2.1]heptane 4a (a 5-exo cyclisation product) (42% yield) as a mixture of exo and endo isomers in a ratio of 66:34 (determined by GLC), from which only the major exo isomer was obtained as a pure compound, 8-azabicyclo[3.2.1] octane 5a (a 6 -endo cyclisation product) (30%), and the reduction product $6 \mathrm{a}(12 \%)$. The structures of 4 a and 5 a were deduced from the spectroscopic evidence [4a: $v_{\max }$ 1740, 1650 $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.91(\mathrm{~d}, J 4.8 \mathrm{~Hz}, 4-\mathrm{H})$ for the exo isomer and
$4.05(\mathrm{t}, J 4.5 \mathrm{~Hz}, 4-\mathrm{H})$ for the endo isomer. 5a: $v_{\max } 1740,1640$ $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 4.33$ (quintet, $\left.\left.J 3.2 \mathrm{~Hz}, 5-\mathrm{H}\right)\right]^{8}$ The structure of 5a was confirmed by chemical transformation of the compound to the known compound 9. ${ }^{9}$ Thus, reduction of 5a with sodium boranuide in methanol-THF ${ }^{10}$ followed by Swern oxidation of the resulting alcohol 7 gave the aldehyde 8 in 65% overall yield. Treatment of 8 with Wilkinson's catalyst in refluxing xylene ${ }^{11}$ gave 9 in 91% yield.

Scheme 2 Reagents and conditions: i, $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}$, toluene, reflux; ii, $\mathrm{NaBH}_{4}, \mathrm{MeOH}, \mathrm{THF}$; iii, $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}$; iv, $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$

A mechanistic rationalisation for the formation of $\mathbf{4 a}$ and $\mathbf{5 a}$ would involve a [1,5] hydrogen atom transfer of the initially formed phenyl radical 10 to form the α-acylamino radical 11. This step is followed by either a 5 -exo-trig or 6 -exo-trig cyclisation, leading to the new radical intermediates 12 and 13 which are then reduced to $\mathbf{4 a}$ and 5a, respectively. Support for this mechanistic scheme was derived from a deuterium labelling experiment. Thus, treatment of 3 a with $\mathrm{Bu}_{3} \mathrm{SnD}$ (in this experiment a higher concentration of the reagent was used in order to increase the yield of the reduction product) gave the corresponding deuteriated derivatives of $\mathbf{4 a}(42 \%$ as a $2: 1$ diastereoisomeric mixture), 5a (29%) and 6 (24%). The ${ }^{2} \mathrm{H}$ NMR spectrum of the deuteriated 6 a showed that a deuterium atom was found only at the 5 -position and not at all on the phenyl ring. This observation also indicates that the [1,5] hydrogen atom transfer is very fast.
We next examined the effect of a substituent on the prop-2enyl group in the hope of directing the regiochemistry (5-exol 6 -endo) of this cyclisation. The results are summarised in Table 1. The pyrrolidines $\mathbf{3 b}$ and $\mathbf{3 c}$, when treated with $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN, gave the corresponding 7-azabicyclo[2.2.1]heptanes 4b, c predominantly or exclusively. On the other hand, $\mathbf{3 d}$ and $\mathbf{3 e}$

Scheme 3

Scheme 4 Reagents and conditions: i, $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}$, toluene, reflux

Table 1 Product distributions on radical cyclisation of 3a-e

	Starting material	$\mathbf{4}^{a}$	Products (\%) Entry	$\mathbf{5}$
$\mathbf{1}$	3a	$42(66: 34)^{b}$	30	12
2	3b	$63(68: 32)^{b}$	$29($ a single isomer $)$	8
3	3c	$81(72: 28)^{b}$	trace	NI^{c}
4	3d	0	$75(78: 22)^{b, d}$	15
5	3e	0	$72(54: 46)^{d . e}$	NI^{c}

${ }^{a}$ The values in parentheses refer to the ratio of the exo:endo isomers. ${ }^{b}$ Determined by GLC. ${ }^{c}$ NI $=$ not isolated. ${ }^{d}$ The stereochemistry is not known. ${ }^{e}$ Determined by HPLC.
afforded only the 8-azabicyclo[3.2.1] octanes 5d, e, respectively. The observed high regioselectivity could be explained in terms of the combined effects of (1) the electronic stabilisation of the developing radical by the methyl or phenyl group in the transition state leading to either the radical 12 or 13 and (2) the decreased rate of reaction for sterically hindered 6 -endo (for 3b, c) or 5-exo (for 3d, e) cyclisation modes brought about by the methyl or phenyl group. Thus, the regiochemical course of the cyclisation could be controlled by placing an appropriate substituent on the alkenic double bond.
In order to see if the methoxycarbonyl group is essential for this cyclisation to take place, we prepared the 2-hydroxymethyl 14a, 2-formyl 14b, and 2-unsubstituted 1-(o-bromobenzoyl)-2-(prop-2-enyl)pyrrolidines 20 and treated them with $\mathrm{Bu}_{3} \mathrm{SnH}$. The precursors 14a, b were prepared in a straightforward manner from 3a (see Experimental section). The compound 20
was prepared as outlined in Scheme 5. Thus, reduction of 1-tert-butoxycarbonylpyrrolidin-2-one 17^{12} with lithium triethylboranuide ${ }^{13}$ (1.5 mol equiv.) in THF at room temperature followed by treatment of the resulting 2-hydroxypyrrolidine 18 with allyltrimethylsilane (1.5 mol equiv.) in the presence of titanium(Iv) chloride in dichloromethane ${ }^{14}$ to give the 2-(prop-2-enyl)pyrrolidine 19 in 49% overall yield. Deprotection of 19 and acylation with o-bromobenzoyl chloride gave the desired compound 20 in 96% yield.
The alcohol 14a, when treated with $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN, gave a mixture of the 7 -azabicyclo[2.2.1]heptane 15a (84%), the 8 -azabicyclo[3.2.1] octane $7(12 \%)$, and the reduction product $\mathbf{1 6 a}(4 \%)$. The high combined yield (96%) of the cyclisation products as well as the high exo/endo selectivity (7:1) are somewhat surprising when compared to those of 3 a (70% and 1.3:1). The aldehyde 14b also afforded a mixture of three products, $\mathbf{1 5 b}(22 \%), 8(20 \%)$, and $\mathbf{1 6 b}(15 \%)$, but in much lower yields. The low yields of the products are attributed, at least in part, to the instability of the aldehyde 14b under the reaction conditions.
In sharp contrast, the 2 -unsubstituted substrate $\mathbf{2 0}$ gave the reduction product 21 as the major product (81%) and the 8 azabicyclo[3.2.1]octane 9 as the minor product (17%). It should be noted that the corresponding 5 -exo product was not isolated. In order to get more information concerning the formation of 21, the reaction was repeated with $\mathrm{Bu}_{3} \mathrm{SnD}$ instead of $\mathrm{Bu}_{3} \mathrm{SnH}$ to give the corresponding deuteriated compounds $21^{\prime}(62 \%)$ and $\mathbf{9}^{\prime}(31 \%)$. The ${ }^{2} \mathrm{H}$ NMR spectrum of 21 ' showed that the deuterium atom was incorporated into the $5-\mathrm{C}, 2-\mathrm{C}$ and $3-\mathrm{C} / 4-$ C positions ${ }^{15}$ in a ratio of $42: 22: 36$, but no deuterium was found on the phenyl ring. Taking into account the 31% conversion into the cyclised product 9^{\prime}, the yields of the radicals formed as a result of the hydrogen-abstraction by the phenyl radical from the $5-\mathrm{C}, 2-\mathrm{C}$ and $3-\mathrm{C} / 4-\mathrm{C}$ positions were 57,14 and 22%, respectively. These results indicate that, although the initially formed phenyl radical 10 (H instead of $2-\mathrm{CO}_{2} \mathrm{Me}$) rapidly undergoes the $[1,5]$ hydrogen abstraction mainly from the 5 -C to form the radical 11 (H instead of $2-\mathrm{CO}_{2} \mathrm{Me}$) (57%), the cyclisation of this radical to $9^{\prime}(31 \%)$ seems to be only slightly favoured over the reduction (26%). Considering an isotope effect would lower the rate of the reduction, the cyclisation process under the normal conditions may be much less favoured. Thus, it is apparent that the 2 -substituent facilitates this cyclisation. One possible explanation for this would involve a higher population of the reactive conformer in the 2-substituted derivatives. ${ }^{16}$ In order for the cyclisation to take place, the alkenic double bond and the radical centre must first be brought closer together. The radicals derived from the 2 -substituted derivatives $\mathbf{3 a}$ and 14a, b can take the conformation required for the cyclisation more readily than the radical derived from the 2 -unsubstituted derivative $\mathbf{2 0}$. This is because the reactive conformer A derived from $\mathbf{3 a}$ is almost energetically equivalent to the conformer \mathbf{B} (although it depends on the sizes of the substituent at the 2-position), whereas the conformation of the reactive conformer \mathbf{C} derived from $\mathbf{2 0}$ is less stable than that of \mathbf{D} (Fig. 1). An alternative explanation is based on angle compression at the 2 -position caused by the 2 -substituent ('geminal dialkyl effect'). ${ }^{16}$ This effect may lead to a decrease of the angle $\theta_{\mathrm{A}}\left(\theta_{\mathrm{A}}<\theta_{\mathrm{B}}\right)$, which causes the prop-2-enyl group to be moved closer to the radical centre. Probably both the factors are responsible for the increase in rate of cyclisation in the 2-substituted derivatives.
Further support for such an argument was obtained from a comparison of the behaviour between two isomeric 4-(tertbutyldimethylsilyloxy)pyrrolidines 24a, b. Compounds 24a, b were easily prepared starting from L-4-hydroxyproline methyl ester hydrochloride $\mathbf{2 2}{ }^{17}$ as illustrated in Scheme 6. Acylation of 22 with o-bromobenzoyl chloride followed by silylation of the

Scheme 5 Reagents and conditions: $\mathrm{i}, \mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}$, toluene, reflux; ii, $\mathrm{LiEt}_{3} \mathrm{BH}$, THF; iii, $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{SiMe}_{3}, \mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iv, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ v, o-bromobenzoyl chloride, $\mathrm{Et}_{3} \mathrm{~N}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ vi, $\mathrm{Bu}_{3} \mathrm{SnD}$, AIBN, toluene, reflux

Fig. 1
hydroxy group with tert-butyldimethylsilyl chloride in the presence of imidazole in dimethylformamide gave the silyl ether 23 in 82% overall yield. Alkylation of 23 with prop-2-enyl bromide gave a diastereoisomeric mixture of the 2-(prop-2-enyl)pyrrolidine-2-carboxylates 24 in a ratio of $46: 54$ which was separated by silica gel chromatography to give the silyl ethers $\mathbf{2 4 a}$ and 24b. The stereochemistry of the silyl ethers 24a, b was determined by conversion of one of the isomers into the lactone

Scheme 6 Reagents and conditions: i, o-bromobenzoyl chloride, $\mathrm{Et}_{3} \mathrm{~N}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii, TBDMSCl, imidazole, DMF; iii, (TMS) $)_{2} \mathrm{NLi}$, THF, $-78^{\circ} \mathrm{C}$, and then $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$; iv, $\mathrm{BF}_{3}-\mathrm{OEt}_{2}, \mathrm{MeCN}$; v, $\mathrm{Bu}^{r} \mathrm{OK}$, DMSO; vi, 2,4,6-trichlorobenzoyl chloride, $\mathrm{Et}_{3} \mathrm{~N}$, DMAP, toluene, reflux
27. Thus, the silyl ether 24 a was deprotected with boron trifluoride followed by hydrolysis of the ester 25a with potassium tert-butoxide in dimethyl sulfoxide at room temperature ${ }^{18}$ to give the hydroxy carboxylic acid $26 a$. Treatment of 26a with 2,4,6-trichlorobenzoyl chloride in the presence of triethylamine and 4-dimethylaminopyridine (DMAP) in boiling toluene ${ }^{19}$ gave the lactone 27 in 63% overall yield (from 24a). A similar sequence of the reactions of the other isomer 24b failed to give the lactone. This result indicates that the silyl ethers $24 \mathrm{a}, \mathrm{b}$ are assigned as $(2 R, 4 R)$ and $(2 S, 4 R)$, respectively.
Treatment of 24a with $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN gave 7-azabicyclo[2.2.1]heptane 28 a in an 80% yield (as a $2: 1$ diastereoisomeric mixture) and 8-azabicyclo[3.2.1]octane 29a (18%). No reduction product was detected. On the other hand, similar treatment of 24b gave 7-azabicyclo[2.2.1]heptane 28b in a 41% yield (as an essentially single stereoisomer), 8azabicyclo[3.2.1]octane 29b (5%) along with the reduction product $30(32 \%)$. The increase of the total yield of the cyclised products and enhancement of the regioselectivity in the cyclisation of $\mathbf{2 4 a}$ as compared to those of $\mathbf{3 a}$ and $\mathbf{2 4 b}$ could be attributed to the steric repulsion between the bulky tertbutyldimethylsilyloxy and methoxycarbonyl groups which causes the prop-2-enyl group to be brought closer to the radical centre (a decrease of θ_{A}) (Fig. 2). On the other hand, in the isomeric compound 24b the steric repulsion occurs between the silyloxy and prop-2-enyl groups and this may result in not only destabilisation of the reactive conformer \mathbf{E}, but also an increase of θ_{B}. Consequently, the rate of the cyclisation is expected to decrease.
In summary, we found that the 1-(o-bromobenzoyl)-2-(prop-2-enyl)pyrrolidines 3, on treating with $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN in boiling toluene, gave the azabicyclic compounds 4 and/or 5. Applications of this method of radical cyclisation to the synthesis of biologically active compounds are now in progress.

Scheme 7 Reagents and conditions: i, $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}$, toluene, reflux

* For comparison, the enantiomeric structures are shown

Fig. 2

Experimental

Mps were measured on a Yanaco MP-J3 micro melting point apparatus and are uncorrected. IR spectra were recorded on a JASCO-IR-A-100 spectrophotometer. ${ }^{1} \mathrm{H}(60$ or 300 MHz$),{ }^{2} \mathrm{H}$ (46 MHz) and ${ }^{13} \mathrm{C}$ NMR spectra $(75.4 \mathrm{MHz}$) were measured on a JEOL-JNM-PMX 60 or on a Varian XL- 300 spectrometer for solutions in CDCl_{3}, unless otherwise stated. δ Values quoted are relative to tetramethylsilane, and J values are given in Hz . Exact mass (MS) determinations were obtained on a Hitachi M-80 instrument operating at 20 eV . Column chromatography was performed under pressure on silica gel $60 \mathrm{PF}_{254}$ for preparative TLC (Nacalai Tesque, Inc.). $[\alpha]_{\mathrm{D}}$ values are expressed in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$.

Methyl 1-(o-bromobenzoyl)pyrrolidine-2-carboxylate 2

To a stirred solution of L-proline $1(5.0 \mathrm{~g}, 43.4 \mathrm{mmol})$ in absolute methanol ($60 \mathrm{~cm}^{3}$) under a nitrogen atmosphere at $0^{\circ} \mathrm{C}$ was added dropwise thionyl chloride ($5.68 \mathrm{~g}, 47.7 \mathrm{mmol}$) and the mixture was refluxed for 1 h . The solvent was evaporated off and the residue dissolved in dichloromethane (60 cm^{3}) containing $\mathrm{Et}_{3} \mathrm{~N}(11.0 \mathrm{~g}, 108.5 \mathrm{mmol})$. A solution of o-bromobenzoyl chloride ($10.0 \mathrm{~g}, 45.6 \mathrm{mmol}$) in dichloromethane ($10 \mathrm{~cm}^{3}$) was added to the above solution which was then stirred at room temperature overnight. After this, precipitated material was filtered off and the filtrate evaporated. The residue was dissolved in diethyl ether $\left(40 \mathrm{~cm}^{3}\right)$ and the solution was washed with $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give 2 (13.5 g , quant.) as colourless prisms, mp $76-78^{\circ} \mathrm{C}$ (from hexane-

AcOEt) (Found: $\mathrm{C}, 49.8 ; \mathrm{H}, 4.3 ; \mathrm{N}, 4.15 . \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{BrNO}_{3}$ requires $\mathrm{C}, 50.0 ; \mathrm{H}, 4.5 ; \mathrm{N}, 4.5 \%$; $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1745$ and $1650 ; \delta_{\mathrm{H}}(60 \mathrm{MHz})$ (for the major rotamer) $1.7-2.5(4 \mathrm{H}, \mathrm{m})$, 3.0-3.9 ($2 \mathrm{H}, \mathrm{m}$), 3.74 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.64(1 \mathrm{H}, \mathrm{dd}, J 7$ and $5,2-\mathrm{H}$) and 6.9-7.7 (4 H, m); (for the minor rotamer) 1.7-2.5 (4 H, m), 3.0-3.9 ($2 \mathrm{H}, \mathrm{m}$), 3.49 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.13(1 \mathrm{H}, \mathrm{dd}, J 6.5$ and 4 , 2-H) and 6.9-7.7 (4 H, m).

General procedure for the preparation of methyl 1-(o-bromo-benzoyl)-2-(prop-2-enyl)pyrrolidine-2-carboxylates 3a-e

 To a solution of hexamethyldisilazane ($284 \mathrm{mg}, 1.76 \mathrm{mmol}$) in THF ($5 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere was added a $1.6 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution of butyllithium in hexane (1.1 $\mathrm{cm}^{3}, 1.76 \mathrm{mmol}$) and the mixture was stirred for 30 min . To this mixture was added the ester $2(1.6 \mathrm{mmol})$ in THF $\left(5 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ and the whole was stirred for 15 min . After appropriate prop-2-enyl bromide (for $\mathbf{3 a - c}$, \mathbf{e}) or chloride (for $\mathbf{3 d}$) (2.24 mmol) had been added at $-78^{\circ} \mathrm{C}$ to the mixture it was stirred at room temperature for 5 h . After this the reaction mixture was acidified with $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\left(5 \mathrm{~cm}^{3}\right)$ and concentrated under reduced pressure. The aqueous layer was extracted with diethyl ether and the extract was washed with $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (5:1)]. The following compounds were thus obtained.Methyl 1-(o-bromobenzoyl)-2-(prop-2-enyl)pyrrolidine-2-carboxylate 3a. Yield 93% mp $77-79^{\circ} \mathrm{C}$ (from hexane) (Found: $\mathrm{C}, 54.3 ; \mathrm{H}, 5.1 ; \mathrm{N}, 4.0 . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BrNO}_{3}$ requires C , 54.6 ; $\mathrm{H}, 5.15 ; \mathrm{N}, 4.0 \%$; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1740$ and $1650 ; \delta_{\mathrm{H}}(60$ $\mathrm{MHz}) 1.6-2.35(4 \mathrm{H}, \mathrm{m}), 2.74(1 \mathrm{H}, \mathrm{dd}, J 14$ and 8$), 3.1-3.55$ ($3 \mathrm{H}, \mathrm{m}$), 3.77 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $5.0-5.4(2 \mathrm{H}, \mathrm{m}), 5.55-6.3(1 \mathrm{H}$, $\mathrm{m})$ and $7.0-7.65(4 \mathrm{H}, \mathrm{m})$.
Methyl 1-(o-bromobenzoyl)-2-(but-2-enyl)pyrrolidine-2-carboxylate 3b. Yield 96%, an oil (Found: $\mathbf{M}^{+}, 365.0649$. $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{BrNO}_{3}$ requires $\left.M, 365.0626\right)$; $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1740$ and $1650 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 1.55-2.35(7 \mathrm{H}, \mathrm{m}), 2.45-3.55(4 \mathrm{H}$, $\mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.4-5.75(2 \mathrm{H}, \mathrm{m})$ and $7.0-7.65(4 \mathrm{H}$, $\mathrm{m})$.

Methyl 1-(o-bromobenzoyl)-2-(3-phenylprop-2-enyl)pyrrol-idine-2-carboxylate 3c. Yield 89%, an oil (Found: C, 61.2; H, 5.5; $\mathrm{N}, 3.1$. $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{BrNO}_{3}$ requires $\mathrm{C}, 61.7 ; \mathrm{H}, 5.2 ; \mathrm{N}, 3.3 \%$); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1740$ and $1645 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 1.5-2.4(4 \mathrm{H}, \mathrm{m})$, 2.7-3.9 (4 H, m), 3.80 (3 H, s, OMe), 6.05-6.75 ($2 \mathrm{H}, \mathrm{m}$) and 6.95-7.65 ($9 \mathrm{H}, \mathrm{m}$).

Methyl 1-(o-bromobenzoyl)-2-(2-methylprop-2-enyl)pyrrol-idine-2-carboxylate 3d. Yield 45%, an oil (Found: \mathbf{M}^{+}, 365.0634. $\quad \mathrm{C}_{17} \mathrm{H}_{20} \mathrm{BrNO}_{3}$ requires M, 365.0626); $v_{\text {max }}-$ $\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1740$ and $1650 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 1.6-2.4(4 \mathrm{H}, \mathrm{m})$, $1.90(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.86,3.29$ (1 H each, ABq, $J 14$), 3.15-3.9 $(2 \mathrm{H}, \mathrm{m}), 3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.8-5.05(2 \mathrm{H}, \mathrm{m})$ and $6.9-7.7(4 \mathrm{H}$, m).

Methyl 1-(o-bromobenzoyl)-2-(2-phenylprop-2-enyl)pyrrol-idine-2-carboxylate 3 e . Yield 47%, mp $85-86.5^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: $\mathrm{C}, 61.7 ; \mathrm{H}, 5.2 ; \mathrm{N}, 3.3 . \mathrm{C}_{22} \mathrm{H}_{22} \mathrm{BrNO}_{3}$ requires $\mathrm{C}, 61.7 ; \mathrm{H}, 5.2 ; \mathrm{N}, 3.3 \%) ; v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1740$ and $1645 ; \delta_{\mathbf{H}}(300 \mathrm{MHz}) 1.64-2.06(3 \mathrm{H}, \mathrm{m}), 2.21-2.34(1 \mathrm{H}, \mathrm{m})$, $2.85-2.96(1 \mathrm{H}, \mathrm{m}), 3.15\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.2\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{CPh}=\mathrm{CH}_{2}\right)$, $3.21(1 \mathrm{H}$, ddd, $J 10.3,7.4$ and 5.1$), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.02(1 \mathrm{H}$, d, $J 14.2$, one of $\left.\mathrm{CH}_{2} \mathrm{CPh}=\mathrm{CH}_{2}\right), 5.29(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.42(1 \mathrm{H}, \mathrm{d}$, $J 1.8), 5.7-6.0(1 \mathrm{H}, \mathrm{br}), 7.03-7.15(2 \mathrm{H}, \mathrm{m}), 7.27-7.38(3 \mathrm{H}, \mathrm{m})$ and 7.43-7.50 (3 H, m).

Radical cyclisation of compound 3a

General procedure. To a stirred and boiling solution of 3a ($600 \mathrm{mg}, 1.70 \mathrm{mmol}$) in toluene ($50 \mathrm{~cm}^{3}$) was added a solution of $\mathrm{Bu}_{3} \mathrm{SnH}(643 \mathrm{mg}, 2.21 \mathrm{mmol})$ and AIBN ($28 \mathrm{mg}, 0.17 \mathrm{mmol}$) in toluene ($60 \mathrm{~cm}^{3}$) via a syringe during 2 h , and the mixture was
heated under reflux for 2 h . This procedure was repeated. After removal of the solvent, diethyl ether ($15 \mathrm{~cm}^{3}$) and 8% aq. KF $\left(15 \mathrm{~cm}^{3}\right)$ were added to the residue, and the whole was vigorously stirred at room temperature for 30 min . The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (20:1)]. The first fraction gave a mixture of exo and endo isomers ($66: 34$ by GLC) of methyl 7-benzoyl-3-methyl-7-azabicyclo[2.2.1]heptane-1-carboxylate $\mathbf{4 a}$ ($196 \mathrm{mg}, 42 \%$), from which the major exo-isomer was obtained pure by recrystallisation from hexane, $\operatorname{mp} 88-92{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 70.3 ; \mathrm{H}, 7.1 ; \mathrm{N}, 5.1$. $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}$ requires C, $\left.70.3 ; \mathrm{H}, 7.0 ; \mathrm{N}, 5.1 \%\right) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1}$ 1740 and $1650 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.06(3 \mathrm{H}, \mathrm{d}, J 6.7,3-\mathrm{Me})$, 1.54 (1 H, ddd, $J 11.4,8.2$ and 4.2), $1.71-2.02(4 \mathrm{H}, \mathrm{m}), 2.04(1 \mathrm{H}, \mathrm{dd}, J$ 11.2 and 8.3), 2.34 ($1 \mathrm{H}, \mathrm{dt}, J 11.4$ and 4.0), 3.84 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.91 ($1 \mathrm{H}, \mathrm{d}, J 4.8,4-\mathrm{H}$), $7.37-7.52(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.67-7.72$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{c}} 21.1$ (3-Me), $30.3\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{2}\right), 38.1$ (3C), $41.7\left(\mathrm{CH}_{2}\right), 52.3(\mathrm{OMe}), 67.6(\mathrm{C}-4), 68.0(\mathrm{C}-1), 128.3,128.7$, 131.3, 134.8, 171.4 and 172.3. The second fraction gave methyl 1-benzoyl-2-(prop-2-enyl)pyrrolidine-2-carboxylate 6a (54 mg , 12%) as an oil (Found: $\mathrm{M}^{+}, 273.1380 . \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BrNO}_{3}$ requires $M, 273.1363) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1740$ and $1635 ; \delta_{\mathrm{H}}(300 \mathrm{MHz})$ 1.77-2.11 ($3 \mathrm{H}, \mathrm{m}$), 2.13-2.25 ($1 \mathrm{H}, \mathrm{m}$), $2.71(1 \mathrm{H}, \mathrm{dd}, J 14.2$ and 7.9, one of $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $3.34(1 \mathrm{H}, \mathrm{dd}, J 14.2$ and 7.0 , one of $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 3.42-3.62 ($2 \mathrm{H}, \mathrm{m}$), 3.78 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $5.15-$ $5.20\left(1 \mathrm{H}, \mathrm{m}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C} \mathrm{H}_{2}\right), 5.20-5.24(1 \mathrm{H}, \mathrm{m}$, one of $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $5.77-5.93\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 7.35-7.45$ $(3 \mathrm{H}, \mathrm{m})$ and $7.45-7.52(2 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}} 24.1,35.15,37.25,51.85$, $52.4,68.0,119.5,127.0,128.2,128.3,130.0,133.1,136.8,169.2$ and 174.15. The third fraction gave methyl 8 -benzoyl-8-azabicyclo[3.2.1]octane-1-carboxylate 5a ($141 \mathrm{mg}, 30 \%$), mp $111-114^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 70.3; H, 7.1; $\mathrm{N}, 5.1 . \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}$ requires $\mathrm{C}, 70.3 ; \mathrm{H}, 7.0 ; \mathrm{N}, 5.1 \%$); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1740$ and $1640 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.29-1.51(2 \mathrm{H}$, $\mathrm{m}), 1.68-1.90(3 \mathrm{H}, \mathrm{m}), 1.96(1 \mathrm{H}$, ddd, $J 13.8,5.2$ and 2.0), 2.04 ($1 \mathrm{H}, \mathrm{dd}, J 9.5$ and 7.8), 2.27-2.42 ($3 \mathrm{H}, \mathrm{m}$), 3.75 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.33(1 \mathrm{H}$, quintet, $J 3.2,5-\mathrm{H}), 7.36-7.48(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.54-7.59 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 17.2\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right)$, $32.2\left(\mathrm{CH}_{2}\right), 33.7\left(\mathrm{CH}_{2}\right), 52.3(\mathrm{OMe}), 59.7(\mathrm{C}-5), 65.0(\mathrm{C}-1)$, 127.7, 128.4, 130.5, 136.0, 170.0 and 172.6 .

Radical cyclisation of compound 3a with $\mathrm{Bu}_{3} \mathrm{SnD}$

Following the general procedure, 3a ($500 \mathrm{mg}, 1.42 \mathrm{mmol}$) was treated twice with $\mathrm{Bu}_{3} \mathrm{SnD}(539 \mathrm{mg}, 1.85 \mathrm{mmol})$ and AIBN (23 $\mathrm{mg}, 0.14 \mathrm{mmol}$) in toluene and the crude material was chromatographed on silica gel [hexane-AcOEt (20:1)] to give the deuteriated derivatives of $4 \mathrm{a}(165 \mathrm{mg}, 42 \%$), 6a (92 mg , 24%) and 5 ($113 \mathrm{mg}, 29 \%$) in that order. The ${ }^{2} \mathrm{H}$ NMR spectrum (in CHCl_{3}) of the deuteriated 6a showed a signal due to a deuterium at the 5 -position at $\delta 3.48$ as a broad singlet.

8-Benzoyl-8-azabicyclo[3.2.1]octane-1-methanol 7

To a stirred solution of $5 \mathrm{a}(100 \mathrm{mg}, 0.37 \mathrm{mmol})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$ was added portionwise sodium boranuide ($207 \mathrm{mg}, 5.5 \mathrm{mmol}$). To the boiling mixture was added dropwise absolute methanol ($5 \mathrm{~cm}^{3}$) over 1 h and the whole was refluxed for 30 min and concentrated. After the residue had been dissolved in 1 mol $\mathrm{dm}^{-3} \mathrm{HCl}\left(10 \mathrm{~cm}^{3}\right)$, the aqueous layer was extracted with dichloromethane. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give 7 (90 mg , quant.), mp 127-128.5 ${ }^{\circ} \mathrm{C}$ (from hexane) (Found: C, 73.5; H, 7.9; N, 5.9. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $\mathrm{C}, 73.4$; $\mathrm{H}, 7.8 ; \mathrm{N} .5 .7 \%) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3380$ and 1615; $\delta_{\mathrm{H}}(300$ $\mathrm{MHz}) 1.35-1.44(1 \mathrm{H}, \mathrm{m}), 1.45-1.69(3 \mathrm{H}, \mathrm{m}), 1.72-2.09(5 \mathrm{H}, \mathrm{m})$, $2.26(1 \mathrm{H}, \mathrm{td}, J 13.2$ and 6.1$), 3.66(1 \mathrm{H}, \mathrm{dd}, J 12.7$ and 10.9 , one of $\left.\mathrm{OCH}_{2}\right), 3.86\left(1 \mathrm{H}, \mathrm{dd}, J 12.7\right.$ and 2.7 , one of $\left.\mathrm{OCH}_{2}\right), 4.12(1 \mathrm{H}$, $\mathrm{dt}, J 7.1$ and $2.7,5-\mathrm{H}), 5.77(1 \mathrm{H}, \mathrm{dd}, J 10.9$ and $2.7, \mathrm{OH}$) and 7.41 $(5 \mathrm{H}, \mathrm{s}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 17.5\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{2}\right), 32.6$
$\left(\mathrm{CH}_{2}\right), 32.7\left(\mathrm{CH}_{2}\right), 61.2(\mathrm{C}-5), 66.35\left(\mathrm{OCH}_{2}\right), 68.3(\mathrm{C}-1), 126.4$, 128.6, 129.7, 137.6 and 169.6.

8-Benzoyl-8-azabicyclo[3.2.1]octane-1-carbaldehyde 8

A solution of dimethyl sulfoxide ($86 \mathrm{mg}, 1.1 \mathrm{mmol}$) in dry dichloromethane ($5 \mathrm{~cm}^{3}$) was added to a solution of oxalyl chloride ($70 \mathrm{mg}, 0.55 \mathrm{mmol}$) in dry dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ over a period of 10 min and the mixture was stirred for 15 min . After this, a solution of $7(85 \mathrm{mg}, 0.35 \mathrm{mmol})$ in dry dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ was added to the mixture which was then stirred at the same temperature for 30 min . After addition of triethylamine ($185 \mathrm{mg}, 1.8 \mathrm{mmol}$) to the mixture it was allowed to warm to room temperature. After 2 h , the mixture was diluted with water $\left(10 \mathrm{~cm}^{3}\right)$ and the organic layer was separated and washed with $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (10:1)] to give 8 (55 $\mathrm{mg}, 65 \%$), $\mathrm{mp} \mathrm{122-124}{ }^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, $74.0 ; \mathrm{H}, 6.8 ; \mathrm{N}, 5.55 . \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $\mathrm{C}, 74.0 ; \mathrm{H}, 7.0 ; \mathrm{N}$, $5.75 \%) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1730$ and $1635 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.34$ $1.58(2 \mathrm{H}, \mathrm{m}), 1.70-2.48(8 \mathrm{H}, \mathrm{m}), 4.32(1 \mathrm{H}, \mathrm{dt}, J 7.0$ and 2.8, 5-H), 7.36-7.48 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.52-7.58 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and $9.60(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{C}} 16.85\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{2}\right)$, $29.4\left(\mathrm{CH}_{2}\right), 32.4\left(\mathrm{CH}_{2}\right), 59.4,69.2,127.4,128.5,130.7,135.2$, 170.1 and 195.95.

8-Benzoyl-8-azabicyclo [3.2.1] octane 9

A solution of $8(80 \mathrm{mg}, 0.33 \mathrm{mmol})$ and Wilkinson's complex $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}(305 \mathrm{mg}, 0.33 \mathrm{mmol})$ in xylene ($5 \mathrm{~cm}^{3}$) was refluxed under a nitrogen atmosphere for 3 h . The mixture was concentrated and the residue was chromatographed on silica gel [hexane-AcOEt (7:1)] to give $9(64 \mathrm{mg}, 91 \%)$ as colourless plates, $\mathrm{mp} 94-95^{\circ} \mathrm{C}$ (from hexane) (lit., ${ }^{9} 94-95^{\circ} \mathrm{C}$) (Found: $\mathrm{C}, 78.05 ; \mathrm{H}, 7.75 ; \mathrm{N}, 6.6$. Calc. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C}, 78.1 ; \mathrm{H}, 8.0 ; \mathrm{N}$, $6.5 \%)$; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1625 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.46(1 \mathrm{H}$, br d, $J c a .11), 1.53-1.87(6 \mathrm{H}, \mathrm{m}), 1.87-2.10(3 \mathrm{H}, \mathrm{m}), 4.00-4.08(1 \mathrm{H}$, $\mathrm{m})$, 4.79-4.87 ($1 \mathrm{H}, \mathrm{m}$), 7.35-7.45 ($3 \mathrm{H}, \mathrm{m}$) and 7.45-7.51 (2 H , $\mathrm{m}) ; \delta_{\mathrm{C}} 16.9,27.05,28.35,30.9,32.6,52.1,57.0,127.0,128.3$, 129.65, 136.8 and 167.6.

Radical cyclisation of compound 3b

Following the general procedure, $\mathbf{3 b}(700 \mathrm{mg}, 1.91 \mathrm{mmol})$ was treated twice with $\mathrm{Bu}_{3} \mathrm{SnH}(0.61 \mathrm{~g}, 2.1 \mathrm{mmol})$ and AIBN (31 $\mathrm{mg}, 0.19 \mathrm{mmol}$) in toluene and the crude material was chromatographed on silica gel [hexane-AcOEt (7:1)]. The first fraction gave a mixture of exo and endo isomers ($68: 32$ by GLC) of methyl 7-benzoyl-3-ethyl-7-azabicyclo[2.2.1]heptane-1-carboxylate 4b ($345 \mathrm{mg}, 63 \%$) as an oil (Found: $\mathrm{M}^{+}, 287.1533$. $\mathrm{C}_{17} 7 \mathrm{H}_{21} \mathrm{NO}_{3}$ requires $M, 287.1520$); $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1745$ and $1655 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.80\left(2 / 3 \times 3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ for the exo isomer), $0.85\left(1 / 3 \times 3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ for the endo isomer), $1.23-1.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.48-1.58(1 \mathrm{H}, \mathrm{m}), 1.64$ $1.95(4 \mathrm{H}, \mathrm{m}), 2.00(2 / 3 \mathrm{H}, \mathrm{dd}, J 12.2$ and 8.4$), 2.29-2.41(1 \mathrm{H}$, $\mathrm{m}), 2.59(1 / 3 \mathrm{H}, \mathrm{td}, J 12.0$ and 3.6$), 3.80(1 / 3 \mathrm{H}, \mathrm{s}$, OMe for the endo isomer), 3.81 ($2 / 3 \mathrm{H}, \mathrm{s}$, OMe for the exo isomer), 4.03 ($2 / 3$ $\mathrm{H}, \mathrm{d}, J 4.8,4-\mathrm{H}$ for the exo isomer), $4.11(1 / 3 \mathrm{H}, \mathrm{t}, J 4.3,4-\mathrm{H}$ for the endo isomer), $7.34-7.53(3 \mathrm{H}, \mathrm{m})$ and $7.64-7.73(2 \mathrm{H}, \mathrm{m})$. The second fraction gave methyl 1-benzoyl-2-(3-methylprop-2enyl) pyrrolidine-2-carboxylate $\mathbf{6 b}(44 \mathrm{mg}, 8 \%)$ as an oil (Found: $\mathrm{M}^{+}, 287.1534 . \mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires $M, 287.1520$); $v_{\text {max }}{ }^{-}$ $\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1740$ and $1635 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 1.2-3.9(11 \mathrm{H}, \mathrm{m})$, $3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $5.1-5.9(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH})$ and $7.37(5 \mathrm{H}, \mathrm{br}$ s). The third fraction gave methyl 8-benzoyl-4-methyl-8-azabicyclo[3.2.1]octane-1-carboxylate 5b ($161 \mathrm{mg}, 29 \%$) as a single isomer (the stereochemistry is unknown), $\mathrm{mp} 94.5-96^{\circ} \mathrm{C}$ (from hexane) (Found: C, 70.9; H, 7.5; N, 4.9. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires $\mathrm{C}, 71.1 ; \mathrm{H}, 7.4 ; \mathrm{N}, 4.9 \%$); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1740$ and $1640 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.66(3 \mathrm{H}, \mathrm{d}, J 6.6,4-\mathrm{Me}), 1.23-1.43(2 \mathrm{H}$,
$\mathrm{m}), 1.58-1.77(2 \mathrm{H}, \mathrm{m}), 1.78-1.98(3 \mathrm{H}, \mathrm{m}), 2.09-2.22(1 \mathrm{H}, \mathrm{m})$, $2.29-2.42(1 \mathrm{H}, \mathrm{m}), 3.75(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.02(1 \mathrm{H}, \mathrm{dd}, J 7.0$ and $2.5,5-\mathrm{H}), 7.36-7.52(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.52-7.59(2 \mathrm{H}, \mathrm{m}$, ArH); $\delta_{\mathrm{C}} 17.95(4-\mathrm{Me}), 22.8\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 33.6$ $\left(\mathrm{CH}_{2}\right), 36.3(\mathrm{C}-4), 52.2(\mathrm{OMe}), 64.5(\mathrm{C}-1$ and $\mathrm{C}-5), 127.7,128.4$, $130.5,135.8,170.0$ and 172.6 .

Radical cyclisation of compound 3c

Following the general procedure, $\mathbf{3 c}(880 \mathrm{mg}, 2.05 \mathrm{mmol})$ was treated twice with $\mathrm{Bu}_{3} \mathrm{SnH}(0.66 \mathrm{~g}, 2.26 \mathrm{mmol})$ and AIBN (34 $\mathrm{mg}, 0.20 \mathrm{mmol}$) in toluene and the crude material was chromatographed on silica gel [hexane-AcOEt $(9: 2)$] to give a mixture of exo and endo isomers ($72: 28$ by GLC) of methyl 7-benzoyl-3-benzyl-7-azabicyclo[2.2.1]heptane-1-carboxylate 4c $(582 \mathrm{mg}, 81 \%)$ as colourless rods, $\mathrm{mp} 117-119^{\circ} \mathrm{C}$ (from hexaneAcOEt) (Found: $\mathrm{C}, 75.3 ; \mathrm{H}, 6.8 ; \mathrm{N}, 4.3 . \mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3}$ requires C, $75.6 ; \mathrm{H}, 6.6 ; \mathrm{N}, 4.0 \%) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1740$ and 1650 ; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.48(1 \mathrm{H}$, ddd, $J 12.0,8.8$ and 4.1$), 1.73-2.09(4 \mathrm{H}$, $\mathrm{m}), 2.15(1 \mathrm{H}$, ddt, $J 9.3,7.0$ and 6.2$), 2.35(1 \mathrm{H}, \mathrm{dt}, J 12.0$ and 2.9), $2.50(1 \mathrm{H}$, dd, $J 13.9$ and 9.2$), 2.57-2.70(1 \mathrm{H}, \mathrm{m}), 3.83$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.04(1 \mathrm{H}, \mathrm{d}, J 4.7,4-\mathrm{H}), 6.78-6.82(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.09-7.20 (3 H, m, ArH), 7.35-7.56 (3 H, m, ArH) and 7.72-7.77 $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}$ (for the major isomer) $30.3\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right)$, $39.4\left(\mathrm{CH}_{2}\right), 40.9\left(\mathrm{CH}_{2}\right), 45.75(\mathrm{C}-3), 52.4(\mathrm{OMe}), 64.7(\mathrm{C}-4), 67.9$ (C-1), 126.1, 128.38, 128.41, 128.6, 128.9, 131.5, 134.6, 139.7, 171.2 and 172.0.

Radical cyclisation of compound 3d

Following the general procedure, 3d ($500 \mathrm{mg}, 1.37 \mathrm{mmol}$) was treated twice with $\mathrm{Bu}_{3} \mathrm{SnH}(438 \mathrm{mg}, 1.50 \mathrm{mmol})$ and AIBN ($34 \mathrm{mg}, 0.20 \mathrm{mmol}$) in toluene and the crude material was chromatographed on silica gel [hexane-AcOEt (10:1)]. The first fraction gave a mixture of methyl 1-benzoyl-2-(2-methylprop-2-enyl)pyrrolidine-2-carboxylate 6d and methyl 8-benzoyl-3-methyl-8-azabicyclo[3.2.1]octane-1-carboxylate 5d ($200 \mathrm{mg}, 7: 3$ by GLC). The second fraction gave 5 d (153 mg , 39%) as a diastereoisomeric mixture ($78: 22$ by GLC), mp 113$116^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: $\mathrm{C}, 71.0 ; \mathrm{H}, 7.5 ; \mathrm{N}$, 4.8. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires $\mathrm{C}, 71.1 ; \mathrm{H}, 7.4 ; \mathrm{N}, 4.9 \%$; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1740$ and $1640 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.89-2.48(9 \mathrm{H}$, m), 0.94 (3 H for the major isomer, $\mathrm{d}, J 5.7,3-\mathrm{Me}$), 1.14 (3 H for the minor isomer, d, $J 7.3,3-\mathrm{Me}), 3.75(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 4.29-4.35 (1 H, m, 5-H), 7.36-7.48 (3 H, m, ArH) and 7.53$7.59(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}$ (for the major isomer) $21.4(3-\mathrm{Me}), 24.1$ (3-C), $28.0\left(\mathrm{CH}_{2}\right), 34.0\left(\mathrm{CH}_{2}\right), 38.6\left(\mathrm{CH}_{2}\right), 41.0\left(\mathrm{CH}_{2}\right), 52.3$ (OMe), 59.4 (5-C), 64.9 (1-C), 127.7, 128.4, 130.5, 135.9, 170.1 and 172.6.

Radical cyclisation of compound 3e

Following the general procedure, $3 \mathrm{e}(480 \mathrm{mg}, 1.12 \mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(489 \mathrm{mg}, 1.68 \mathrm{mmol})$ and AIBN $(18 \mathrm{mg}$, 0.11 mmol) in toluene and the crude material was chromatographed on silica gel [hexane-AcOEt (3:1)] to give a diastereoisomeric mixture ($54: 46$ by GLC) of methyl 8-benzoyl-3-phenyl-8-azabicyclo[3.2.1]octane-1-carboxylate $\mathbf{5 e}$ ($283 \mathrm{mg}, 72 \%$), mp $172-173^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: $\mathrm{C}, 75.9 ; \mathrm{H}, 6.7 ; \mathrm{N}, 4.0 . \mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3}$ requires $\mathrm{C}, 75.6 ; \mathrm{H}, 6.6$; $\mathrm{N}, 4.0 \%) ; v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1730$ and $1625 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.50-$ $2.53(7 \mathrm{H}, \mathrm{m}), 2.55(1 / 2 \times 1 \mathrm{H}, \mathrm{t}, J 13.0), 2.85(1 / 2 \times 1 \mathrm{H}$, $\mathrm{dt}, J 9.3$ and 7.7$), 3.15(1 / 2 \times 1 \mathrm{H}$, ddd, $J 17.9,12.3$ and 5.7), $3.29(1 / 2 \times 1 \mathrm{H}, \mathrm{dd}, J 14.1$ and 7.7$), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 4.37-4.48 (1 H, m, 5-H), 7.16-7.24 (2 H, m, ArH), 7.25-7.34 (3 $\mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.38-7.51$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.59-7.65 ($2 \mathrm{H}, \mathrm{m}$, ArH).

1-(o-Bromobenzoyl)-2-(prop-2-enyl)pyrrolidine-2-methanol 14a

 Following a procedure similar to that described for the preparation of 7 from 5a, the ester 3a ($1.40 \mathrm{~g}, 3.97 \mathrm{mmol}$) wasreduced with sodium boranuide $(1.50 \mathrm{~g}, 39.8 \mathrm{mmol})$. The crude material was chromatographed on silica gel [hexane-AcOEt (4:1)] to give 14a ($978 \mathrm{mg}, 76 \%$) as an oil (Found: C, 55.3; $\mathrm{H}, 5.7 ; \mathrm{N}, 4.2 . \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{BrNO}_{2}$ requires $\mathrm{C}, 55.6 ; \mathrm{H}, 5.6 ; \mathrm{N}, 4.3 \%$); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3370$ and $1625 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 1.5-2.2(4 \mathrm{H}$, $\mathrm{m}), 2.5-3.0(2 \mathrm{H}, \mathrm{m}), 3.0-3.4(2 \mathrm{H}, \mathrm{m}), 3.80(2 \mathrm{H}, \mathrm{d}, J 5.5)$, 4.95-6.45 (4 H, m) and 7.0-7.7 (4 H, m).

1-(o-Bromobenzoyl)-2-(prop-2-enyl)pyrrolidine-2-carbaldehyde

 14bFollowing a procedure similar to that described for the preparation of 8 from 7, Swern oxidation of the alcohol 14a ($595 \mathrm{mg}, 1.84 \mathrm{mmol}$) with oxalyl chloride $(419 \mathrm{mg}, 3.30 \mathrm{mmol})$ and dimethyl sulfoxide ($430 \mathrm{mg}, 5.51 \mathrm{mmol}$) followed by chromatography of the crude product on silica gel [hexaneAcOEt (4:1)] gave 14b ($550 \mathrm{mg}, 93 \%$), mp $89-89.5^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 55.7; H, 5.0; N, 4.3. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BrNO}_{2}$ requires $\mathrm{C}, 55.9 ; \mathrm{H}, 5.0 ; \mathrm{N}, 4.35 \%$) $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1730$ and $1635 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 1.7-2.2(4 \mathrm{H}, \mathrm{m}), 2.74(1 \mathrm{H}, \mathrm{dd}, J 14$ and 7.8), $3.14(1 \mathrm{H}, \mathrm{dd}, J 14$ and 7.3), 3.2-3.5 ($2 \mathrm{H}, \mathrm{m}$), $5.0-5.4(2 \mathrm{H}$, $\mathrm{m}), 5.6-6.4(1 \mathrm{H}, \mathrm{m}), 7.1-7.7(4 \mathrm{H}, \mathrm{m})$ and $9.70(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$.

Radical cyclisation of $\mathbf{1 4 a}$

Following the general procedure, $14 \mathbf{a}(500 \mathrm{mg}, 1.54 \mathrm{mmol})$ was treated twice with $\mathrm{Bu}_{3} \mathrm{SnH}(0.52 \mathrm{~g}, 1.78 \mathrm{mmol})$ and AIBN ($25 \mathrm{mg}, 0.16 \mathrm{mmol}$) in toluene and the crude product was chromatographed on silica gel [hexane-AcOEt (10:1)]. The first fraction gave a mixture of exo and endo isomers (61:39 by GLC) of 7-benzoyl-3-methyl-7-azabicyclo[2.2.1]heptane-1methanol 15a ($273 \mathrm{mg}, 72 \%$) as an oil (Found: C, $73.1 ; \mathrm{H}, 8.0$; $\mathrm{N}, 5.9 . \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $\mathrm{C}, 73.4 ; \mathrm{H}, 7.8 ; \mathrm{N}, 5.7 \%$; $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{1} 3360$ and $1610 ; \delta_{\mathrm{H}}(300 \mathrm{MHz})$ (for the exo isomer) $0.88(3 \mathrm{H}, \mathrm{d}, J 6.9,3-\mathrm{Me}), 1.39-1.76(3 \mathrm{H}, \mathrm{m}), 1.80-2.10$ ($3 \mathrm{H}, \mathrm{m}$), 2.18-2.37 (1 H, m), $3.70(1 \mathrm{H}, \mathrm{d}, J 4.6,4-\mathrm{H}), 3.94(1 \mathrm{H}$, dd, $J 13.1$ and 7.9 , one of $\left.\mathrm{OCH}_{2}\right), 4.02(1 \mathrm{H}, \mathrm{dd}, J 13.1$ and 6.6 , one of $\left.\mathrm{OCH}_{2}\right), 5.65(1 \mathrm{H}$, dd, $J 7.9$ and $6.6, \mathrm{OH})$ and $7.36-7.50$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); (for the endo isomer) $1.00(3 \mathrm{H}, \mathrm{d}, J 6.7,3-\mathrm{Me}$), $1.39-1.76(3 \mathrm{H}, \mathrm{m}), 1.80-2.10(3 \mathrm{H}, \mathrm{m}), 2.18-2.37(1 \mathrm{H}, \mathrm{m}), 3.87$ $(1 \mathrm{H}, \mathrm{t}, J 4.5,4-\mathrm{H}), 3.93\left(2 \mathrm{H}, \mathrm{d}, J 7.2, \mathrm{OCH}_{2}\right), 5.61(1 \mathrm{H}, \mathrm{t}$, $J 7.2, \mathrm{OH})$ and $7.36-7.50(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$. The second fraction gave a mixture of 7 and 1-benzoyl-2-(prop-2-enyl)pyrrolidine-2-methanol $16 a(49 \mathrm{mg}, 10: 3$ by GLC), from which only 7, $\mathrm{mp} 127-128.5^{\circ} \mathrm{C}$, was isolated as a pure compound by recrystallisation from hexane.

Radical cyclisation of 14b

Following the general procedure, $\mathbf{1 4 b}(500 \mathrm{mg}, 1.55 \mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(404 \mathrm{mg}, 1.56 \mathrm{mmol})$ and AIBN (26 $\mathrm{mg}, 0.16 \mathrm{mmol}$) in toluene and the crude product was chromatographed on silica gel [hexane-AcOEt (15:1)]. The first fraction gave a diastereoisomeric mixture (57:43 by ${ }^{1} \mathrm{H}$ NMR) of 7-benzoyl-3-methyl-7-azabicyclo[2.2.1]heptane-1carbaldehyde $\mathbf{1 5 b}(82 \mathrm{mg}, 22 \%), \mathrm{mp} 84-85^{\circ} \mathrm{C}$ (from hexaneAcOEt) (Found: $\mathrm{C}, 74.1 ; \mathrm{H}, 6.95 ; \mathrm{N}, 5.7 . \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires C, $74.05 ; \mathrm{H}, 7.0 ; \mathrm{N}, 5.8 \%) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1725$ and 1640 ; $\delta_{\mathrm{H}}(300 \mathrm{MHz})$ (for the exo isomer) $1.06(3 \mathrm{H}, \mathrm{d}, J 6.8,3-\mathrm{Me})$, $1.25-2.26(6 \mathrm{H}, \mathrm{m}), 2.29-2.41(1 \mathrm{H}, \mathrm{m}), 3.95(1 \mathrm{H}, \mathrm{d}, J 4.8,4-\mathrm{H})$, 7.34-7.68 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and $10.05(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$); (for the endo isomer) $1.02(3 \mathrm{H}, \mathrm{d}, J 6.8,3-\mathrm{Me}), 1.25-2.26(6 \mathrm{H}, \mathrm{m}), 2.48(1 \mathrm{H}$, $\mathrm{td}, J 11.6$ and 3.4$), 4.09(1 \mathrm{H}, \mathrm{t}, J 4.5,4-\mathrm{H}), 7.34-7.68(5 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH})$ and $9.99(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$. The second fraction gave 1-benzoyl-2-(prop-2-enyl) pyrrolidine-2-carbaldehyde 16b (56 $\mathrm{mg}, 15 \%$) as an oil (Found: C, 73.6; $\mathrm{H}, 7.4 ; \mathrm{N}, 5.8 . \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $\mathrm{C}, 74.05 ; \mathrm{H}, 7.0 ; \mathrm{N}, 5.8 \%) ; v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1735$ and $1630 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 1.7-2.2(4 \mathrm{H}, \mathrm{m}), 2.68(1 \mathrm{H}, \mathrm{dd}, J 14$ and $7.5), 3.13(1 \mathrm{H}, \mathrm{dd}, J 14$ and 6.7$), 3.4-3.7(2 \mathrm{H}, \mathrm{m}), 4.95-5.4(2 \mathrm{H}$, $\mathrm{m}), 5.6-6.3(1 \mathrm{H}, \mathrm{m}), 7.44(5 \mathrm{H}, \mathrm{s})$ and $9.68(1 \mathrm{H}, \mathrm{s})$. The third fraction gave $8(76 \mathrm{mg}, 20 \%)$, mp $122-124^{\circ} \mathrm{C}$.

1-(o-Bromobenzoyl)-2-(prop-2-enyl)pyrrolidine 20

To a solution of 1-(tert-butoxycarbonyl)pyrrolidin-2-one $17{ }^{12}$ $(1.50 \mathrm{~g}, 8.10 \mathrm{mmol})$ in anhydrous THF $\left(20 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere was added a $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of $\mathrm{LiEt}_{3} \mathrm{BH}$ in THF ($12.2 \mathrm{~cm}^{3}, 12.2 \mathrm{mmol}$) and the mixture was stirred at the same temperature for 40 min . The reaction was quenched by adding saturated aq. $\mathrm{NaHCO}_{3} .30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (5 drops) was then added to the reaction mixture at $0^{\circ} \mathrm{C}$ and the whole was stirred for 20 min . After removal of the solvent by evaporation, the residue was dissolved in dichloromethane (30 cm^{3}), and the solution was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give the crude 1-(tert-butoxycarbonyl)pyrrolidin-2-ol 18 (1.52 g , quant.) as an oil, which was used directly for the next step.

To a solution of $18(1.52 \mathrm{~g}, 8.10 \mathrm{mmol})$ and allyltrimethylsilane ($1.44 \mathrm{~g}, 12.6 \mathrm{mmol}$) in dichloromethane $\left(25 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere was added dropwise $\mathrm{TiCl}_{4}(2.40 \mathrm{~g}, 12.6 \mathrm{mmol})$ and the mixture was stirred at the same temperature for 1 h . After water $\left(10 \mathrm{~cm}^{3}\right)$ had been added to the mixture, the organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (15:1)] to give 1-(tert-butoxycarbonyl)-2-(prop-2-enyl)pyrrolidine $19\left(765 \mathrm{mg}, 43 \%\right.$) as an oil; $\delta_{\mathrm{H}}(60$ $\mathrm{MHz}) 1.45(9 \mathrm{H}, \mathrm{s}), 1.65-2.6(6 \mathrm{H}, \mathrm{m}), 3.2-3.5(2 \mathrm{H}, \mathrm{m}), 3.5-4.0$ $(1 \mathrm{H}, \mathrm{m}), 4.8-5.2(2 \mathrm{H}, \mathrm{m})$ and $5.4-6.05(1 \mathrm{H}, \mathrm{m})$.

Trifluoroacetic acid ($35 \mathrm{~cm}^{3}$) was added to a solution of 19 $(765 \mathrm{mg}, 3.62 \mathrm{mmol})$ in dichloromethane $\left(3.5 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at room temperature for 1 h . The solvent was evaporated off and the residue was dissolved in dichloromethane ($20 \mathrm{~cm}^{3}$). To this solution were added successively $\mathrm{Et}_{3} \mathrm{~N}(1.83 \mathrm{~g}, 18.1 \mathrm{mmol})$, DMAP ($42 \mathrm{mg}, 0.36 \mathrm{mmol}$) and o-bromobenzoyl chloride $(1.19 \mathrm{~g}, 5.43 \mathrm{mmol})$ and the whole was stirred at room temperature for 1 h . After water $\left(10 \mathrm{~cm}^{3}\right)$ had been added to the reaction mixture, the organic layer was separated, washed with $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (5:1)] to give $20(1.02 \mathrm{~g}, 96 \%$) as an oil (Found: C, 57.0; H, 5.5; $\mathrm{N}, 4.9 . \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrNO}$ requires $\mathrm{C}, 57.2 ; \mathrm{H}, 5.5 ; \mathrm{N}, 4.8 \%$); $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1635 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 1.6-3.4(7 \mathrm{H}, \mathrm{m}), 3.4-3.9$ $(1 \mathrm{H}, \mathrm{m}), 4.1-4.6(1 \mathrm{H}, \mathrm{m}), 4.6-5.3(2 \mathrm{H}, \mathrm{m}), 5.3-6.2(1 \mathrm{H}, \mathrm{m})$ and $7.0-7.7(4 \mathrm{H}, \mathrm{m})$.

Radical cyclisation of 20

Following the general procedure, $20(600 \mathrm{mg}, 2.04 \mathrm{mmol})$ was treated twice with $\mathrm{Bu}_{3} \mathrm{SnH}(772 \mathrm{mg}, 2.65 \mathrm{mmol})$ and AIBN ($33 \mathrm{mg}, 0.20 \mathrm{mmol}$) in toluene and the crude material was chromatographed on silica gel [hexane-AcOEt (10:1)]. The first fraction gave 1-benzoyl-2-(prop-2-enyl)pyrrolidine 21 ($356 \mathrm{mg}, 81 \%$) as an oil (Found: $\mathrm{M}^{+}, 215.1288 . \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}$ requires $M, 215.1308) ; v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1630 ; \delta_{\mathrm{H}}(60 \mathrm{MHz})$ 1.5-2.9 (6 H, m), 3.3-3.7 (2 H, br), 4.05-4.6 (1 H, br), 4.8-5.4 $(2 \mathrm{H}, \mathrm{m}), 5.4-6.25(1 \mathrm{H}, \mathrm{m})$ and $7.2-7.7(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 24.9,29.4$, $37.4,50.35$ (5-C), 56.5 (2-C), 117.4, 127.1, 128.1, 129.7, 134.5, 137.4 and 169.7. The second fraction gave $9(74 \mathrm{mg}, 17 \%), \mathrm{mp}$ $94-95^{\circ} \mathrm{C}$.

Radical cyclisation of 20 with $\mathrm{Bu}_{3} \mathrm{SnD}$

Following the general procedure, $20(400 \mathrm{mg}, 1.36 \mathrm{mmol})$ was treated twice with $\mathrm{Bu}_{3} \mathrm{SnD}(478 \mathrm{mg}, 1.64 \mathrm{mmol})$ and AIBN ($23 \mathrm{mg}, 0.14 \mathrm{mmol}$) in toluene and the crude material was chromatographed on silica gel [hexane-AcOEt (10:1)]. The first fraction gave the deuteriated 1-benzoyl-2-(prop-2-enyl)pyrrolidine $21^{\prime}(181 \mathrm{mg}, 62 \%)$ as an oil. The ${ }^{2} \mathrm{H}$ NMR spectrum (in CHCl_{3}) showed three signals at $\delta 0.99$ (deuterium distribution, 36%), $3.42(42 \%)$ and $4.33(22 \%)$ due to deuteriums at the 3- and/or 4-, 5- and 2-positions, respectively. The second fraction gave $\left[3-{ }^{2} \mathrm{H}_{1}\right]$-8-benzoyl-8-azabicyclo[3.2.1]octane 9^{\prime} ($93 \mathrm{mg}, 31 \%$) as colourless crystals, whose ${ }^{2} \mathrm{H}$ NMR spectrum
(in CHCl_{3}) showed signals at $\delta 1.63$ (for the major isomer) and 1.78 (for the minor isomer).

Methyl (2S,4R)-1-(o-bromobenzoyl)-4-(tert-butyldimethylsilyloxy) pyrrolidine-2-carboxylate 23

Following a procedure similar to that for the preparation of 2, methyl ($2 S, 4 R$)-1-(2-bromobenzoyl)-4-hydroxypyrrolidine-2carboxylate ($3.56 \mathrm{~g}, 97 \%$) was obtained from trans-4-hydroxy-Lproline methyl ester hydrochloride $22^{17}(2.04 \mathrm{~g}, 11.2 \mathrm{mmol})$ and o-bromobenzoyl chloride $(2.71 \mathrm{~g}, 12.4 \mathrm{mmol})$ as an oil, which was used for the next step without further purification.
tert-Butyldimethylsilyl chloride $(110 \mathrm{mg}, 0.73 \mathrm{mmol})$ and imidazole ($104 \mathrm{mg}, 1.52 \mathrm{mmol}$) were added to a solution of the thus obtained amido ester ($200 \mathrm{mg}, 0.61 \mathrm{mmol}$) in DMF ($2 \mathrm{~cm}^{3}$) and the mixture was stirred at room temperature for 4 h . Dichloromethane ($10 \mathrm{~cm}^{3}$) and water $\left(5 \mathrm{~cm}^{3}\right)$ were added to the reaction mixture and the organic layer was separated, washed with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(5 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (4:1)] to give 23 ($220 \mathrm{mg}, 82 \%$), mp 93.5$94.5^{\circ} \mathrm{C}$ (from hexane) (Found: $\mathrm{C}, 51.4 ; \mathrm{H}, 6.4 ; \mathrm{N}, 3.4$. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{BrNO}_{4} \mathrm{Si}$ requires $\mathrm{C}, 51.6 ; \mathrm{H}, 6.4 ; \mathrm{N}, 3.2 \%$); $[\alpha]_{\mathrm{D}}^{24}$ -65.4 (c $0.81, \mathrm{EtOH}) ; v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1745$ and $1650 ; \delta_{\mathrm{H}}(60$ MHz) (as a mixture of two rotamers) $0.00,0.05,0.10$ (total $6 \mathrm{H}, \mathrm{s}$ each $), 0.85,0.90($ total 9 H , both s), $2.0-2.4(2 \mathrm{H}, \mathrm{m}), 3.0-3.3(1 \mathrm{H}$, $\mathrm{m}), 3.4-3.7(1 \mathrm{H}, \mathrm{m}), 3.46,3.80$ (total 3 H , both s, OMe), 4.2-4.9 ($2 \mathrm{H}, \mathrm{m}$) and $7.15-7.75(4 \mathrm{H}, \mathrm{m})$.

Methyl ($2 R, 4 R$)- and ($2 S, 4 R$)-1-(o-bromobenzoyl)-4-(tert-butyl-dimethylsilyloxy)-2-(prop-2-enyl)pyrrolidine-2-carboxylates 24a and 24b
Following a procedure similar to that for the preparation of 3a, the ester $23(1.00 \mathrm{~g}, 2.26 \mathrm{mmol})$ was treated with lithium hexamethyldisilazide [prepared from hexamethyldisilazane ($474 \mathrm{mg}, 2.94 \mathrm{mmol}$) and a $1.6 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution of butyllithium in hexane ($1.84 \mathrm{~cm}^{3}, 2.94 \mathrm{mmol}$)] and prop-2-enyl bromide (383 $\mathrm{mg}, 3.16 \mathrm{mmol}$). The crude material was chromatographed on silica gel [hexane-AcOEt (5:1)]. The first fraction gave 24a ($482 \mathrm{mg}, 44 \%$) as an oil (Found: C, $55.1 ; \mathrm{H}, 6.8 ; \mathrm{N}, 3.2$. $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{BrNO} \mathrm{N}_{4} \mathrm{Si}$ requires $\mathrm{C}, 54.8 ; \mathrm{H}, 6.7 ; \mathrm{N}, 2.9 \%$); $[\alpha]_{\mathrm{D}}^{23}$ $-48.9(c \quad 2.60, \mathrm{EtOH}) ; v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1740$ and $1650 ; \delta_{\mathrm{H}^{-}}$ $(300 \mathrm{MHz})-0.04(3 \mathrm{H}, \mathrm{s}),-0.01(3 \mathrm{H}, \mathrm{s}), 0.82(9 \mathrm{H}, \mathrm{s}), 2.14(1 \mathrm{H}$, br dd, $J 12.9$ and 6.1 , one of $\left.3-\mathrm{H}_{2}\right), 2.31(1 \mathrm{H}, \mathrm{dd}, J 12.9$ and 6.1 , one of $\left.3-\mathrm{H}_{2}\right), 2.70\left(1 \mathrm{H}, \mathrm{dd}, J 14.0\right.$ and 8.8 , one of $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $3.10-3.27\left(1 \mathrm{H}\right.$, br, one of $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.41(2 \mathrm{H}$, br dd, $J 13.9$ and $\left.6.1,5-\mathrm{H}_{2}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.36(1 \mathrm{H}$, quintet, $J 6.1,4-\mathrm{H})$, 5.17-5.27 (2 H, m, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.83-6.02(1 \mathrm{H}, \mathrm{br}$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 7.20-7.31(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.36(1 \mathrm{H}, \mathrm{brt}, J c a .7 .5$, $\mathrm{ArH})$ and $7.57(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ ca. $7.5, \mathrm{ArH}) ; \delta_{\mathrm{C}}-5.0,-4.95,17.9$, 25.6,38.6,44.2,52.5,57.15,68.1,68.7, 119.5, 127.7, 130.3, 132.85, $133.5,139.1,167.3$ and 173.2. The second fraction gave $\mathbf{2 4 b}$ (564 $\mathrm{mg}, 52 \%$) as an oil (Found: C, $54.85 ; \mathrm{H}, 6.95 ; \mathrm{N}, 3.2$. $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{BrNO}_{4} \mathrm{Si}$ requires $\mathrm{C}, 54.8 ; \mathrm{H}, 6.7 ; \mathrm{N}, 2.9 \%$) ; $[\alpha]_{\mathrm{D}}^{24}+24.4$ $(c 1.24, \mathrm{EtOH}) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1740$ and $1645 ; \delta_{\mathrm{H}}(300 \mathrm{MHz})$ $-0.01(3 \mathrm{H}, \mathrm{s}), 0.03(3 \mathrm{H}, \mathrm{s}), 0.85(9 \mathrm{H}, \mathrm{s}), 2.12-2.28(2 \mathrm{H}$, m), 2.86-2.97(1 H, m), 3.03-3.18(1 H, br), $3.23(1 \mathrm{H}, \mathrm{dd}, J 14.3$ and 7.2), $3.41-3.53(1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.46(1 \mathrm{H}$, quintet, $J 7.2$), $5.20-5.28\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.93-6.12(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 7.21-7.29(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.36(1 \mathrm{H}, \mathrm{td}, J 7.4$ and $1.2, \mathrm{ArH})$ and $7.56-7.60(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Methyl (2R,4R)-1-(o-bromobenzoyl)-4-hydroxy-2-(prop-2-enyl)pyrrolidine-2-carboxylate 25a

To a solution of 24a ($206 \mathrm{mg}, 0.43 \mathrm{mmol}$) in acetonitrile $\left(5 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(273 \mathrm{mg}, 1.92 \mathrm{mmol})$ and the mixture was stirred at the same temperature for 30 min . The reaction mixture was made alkaline with saturated aq. $\mathrm{NaHCO}_{3}\left(20 \mathrm{~cm}^{3}\right)$ and extracted with AcOEt. The extract
was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated and the residue was chromatographed on silica gel [hexane-AcOEt (1:1)] to give $\mathbf{2 5 a}$ ($150 \mathrm{mg}, 95 \%$), mp $97-98^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: $\mathrm{C}, 52.1 ; \mathrm{H}, 4.7 ; \mathrm{N}, 4.1 . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BrNO}_{4}$ requires $\mathrm{C}, 52.2 ; \mathrm{H}, 4.9$; $\mathrm{N}, 3.8 \%) ;[\alpha]_{\mathrm{D}}^{25}-68.6(c 0.21, \mathrm{EtOH}) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3430$, 1740, 1705 and $1630 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 2.1-2.4(2 \mathrm{H}, \mathrm{m}), 2.68(1 \mathrm{H}$, dd, $J 14$ and 8), $3.1-3.55(3 \mathrm{H}, \mathrm{m}), 3.86(3 \mathrm{H}, \mathrm{s}), 4.1-4.4(2 \mathrm{H}, \mathrm{m})$, $5.0-5.4(2 \mathrm{H}, \mathrm{m}), 5.55-6.3(1 \mathrm{H}, \mathrm{m})$ and $7.0-7.7(4 \mathrm{H}, \mathrm{m})$.

($1 R, 4 R$)-5-(\boldsymbol{o}-Bromobenzoyl)-4-(prop-2-enyl)-2-oxa-5azabicyclo[2.2.1] heptan-3-one 27

To a solution of $25 \mathrm{a}(86 \mathrm{mg}, 0.23 \mathrm{mmol})$ in dimethyl sulfoxide $\left(1 \mathrm{~cm}^{3}\right.$) was added Bu'OK ($39 \mathrm{mg}, 0.35 \mathrm{mmol}$) and the mixture was stirred at room temperature for 16 h . The reaction mixture was diluted with water ($10 \mathrm{~cm}^{3}$), acidified with conc. HCl , and extracted with dichloromethane. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give the carboxylic acid 26a (82 mg , quant.). To a solution of $\mathbf{2 6 a}(82 \mathrm{mg}, 0.23 \mathrm{mmol}$) in toluene ($3 \mathrm{~cm}^{3}$) were added successively $\mathrm{Et}_{3} \mathrm{~N}(116 \mathrm{mg}, 1.15$ mmol), DMAP ($3 \mathrm{mg}, 0.02 \mathrm{mmol}$) and a solution of $2,4,6-\mathrm{tri}$ chlorobenzoyl chloride ($280 \mathrm{mg}, 1.15 \mathrm{mmol}$) in toluene ($5 \mathrm{~cm}^{3}$), and the whole was refluxed for 5 h . The reaction mixture was diluted with water $\left(5 \mathrm{~cm}^{3}\right)$ and the organic layer was separated. The aqueous layer was extracted with toluene and the combined extracts were washed with $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (2:1)] to give 27 ($49 \mathrm{mg}, 63 \%$ from 25a), mp 163-164 ${ }^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: $\mathrm{C}, 53.7 ; \mathrm{H}, 4.1 ; \mathrm{N}, 4.1 . \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BrNO}_{3}$ requires C , $53.4 ; \mathrm{H}, 4.2 ; \mathrm{N}, 4.2 \%$); $[\alpha]_{\mathrm{D}}^{24}-164.3$ (c 0.23 , $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1795$ and $1660 ; \delta_{\mathrm{H}}(300 \mathrm{MHz})$ 2.16, 2.20 (1 H each, ABq, $J 11.3,7-\mathrm{H}_{2}$), 2.99 ($1 \mathrm{H}, \mathrm{br}$ dd, $J 13.5$ and 7.5), $3.24(1 \mathrm{H}$, br d, $J 10), 3.54(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 10), 3.61-3.74$ $(1 \mathrm{H}, \mathrm{br}), 4.90-6.05(4 \mathrm{H}, \mathrm{m}), 7.24-7.33(2 \mathrm{H}, \mathrm{m}), 7.38(1 \mathrm{H}, \mathrm{brt}, J$ 7.2) and $7.58(1 \mathrm{H}, \mathrm{d}, J 7.8) ; \delta_{\mathrm{C}} 31.5\left(\mathrm{CH}_{2}\right), 42.8\left(\mathrm{CH}_{2}\right), 54.3$ $\left(\mathrm{CH}_{2}\right), 69.0,74.9,119.5,127.9,128.0,131.0,132.4,133.1,138.3$, 169.0 and 170.75 .

Radical cyclisation of compound 24a

Following the general procedure, 24 a ($500 \mathrm{mg}, 1.04 \mathrm{mmol}$) was treated twice with $\mathrm{Bu}_{3} \mathrm{SnH}(390 \mathrm{mg}, 1.35 \mathrm{mmol})$ and AIBN $(17 \mathrm{mg}, 0.10 \mathrm{mmol}$) in toluene and the crude material was chromatographed on silica gel [hexane-AcOEt (10:1)]. The first fraction gave a mixture of exo and endo isomers (77:23 by GLC) of methyl (1R,3R,4S)-7-benzoyl-3-(tert-butyldimethyl-silyloxy)-5-methyl-7-azabicyclo[2.2.1]heptane-1-carboxylate
28 a ($333 \mathrm{mg}, 79 \%$), mp $135-136^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 64.95; H, 7.9; N, 3.8. $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{4}$ Si requires C, 65.5; $\mathrm{H}, 8.2 ; \mathrm{N}, 3.5 \%) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1740$ and $1650 ; \delta_{\mathrm{H}}(300 \mathrm{MHz})$ (for the exo isomer) $-0.14(3 \mathrm{H}, \mathrm{s}),-0.03(3 \mathrm{H}, \mathrm{s}), 0.75(9 \mathrm{H}, \mathrm{s})$, $1.19(3 \mathrm{H}, \mathrm{d}, J 6.5,5-\mathrm{Me}), 1.68-1.92(2 \mathrm{H}, \mathrm{m}), 1.71(1 \mathrm{H}, \mathrm{dt}, J 10.6$ and 3.3$), 2.10(1 \mathrm{H}$, dd, $J 12.9$ and 6.6$), 2.21(1 \mathrm{H}, \mathrm{dt}, J 12.9$ and 2.5), $3.76(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.97(1 \mathrm{H}, \mathrm{dd}, J 6.5$ and 2.3, 3-H), 7.32-7.48 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.71-7.77 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); (for the endo isomer) $-0.15(3 \mathrm{H}, \mathrm{s}),-0.03(3 \mathrm{H}, \mathrm{s}), 0.74(9 \mathrm{H}, \mathrm{s})$, 1.03 ($3 \mathrm{H}, \mathrm{d}, J 6.8,5-\mathrm{Me}$), 1.13 ($1 \mathrm{H}, \mathrm{dd}, J 10.7$ and 3.9), $1.68-1.92$ $(1 \mathrm{H}, \mathrm{m}), 2.13(1 \mathrm{H}, \mathrm{dd}, J 12.9$ and 6.7$), 2.27(1 \mathrm{H}, \mathrm{dt}, J 12.9$ and 2.5), $2.41-2.57(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.94-3.99(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}), 4.31(1 \mathrm{H}, \mathrm{dd}, J 6.7$ and $2.2,3-\mathrm{H}), 7.32-7.48(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.71-7.77 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); δ_{C} (for the exo isomer) -4.7 , $18.0,20.55,25.7,32.4,41.4,43.25,52.4,67.5,74.8,75.1,128.0$, $129.15,131.0,145.05,170.8$ and 172.6. The second fraction gave methyl (IR,5S,6S)-8-benzoyl-6-(tert-butyldimethylsilyloxy)-8-azabicyclo[3.2.1]octane-1-carboxylate 29a ($86 \mathrm{mg}, 21 \%$) as an oil (Found: C, 65.6; H, 8.4; N, 3.3. $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{Si}$ requires C, $65.5 ; \mathrm{H}, 8.2 ; \mathrm{N}, 3.5 \%$); $[\alpha]_{\mathrm{D}}^{23}+2.1$ (c 0.28 , EtOH); $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1740$ and $1640 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.06(3 \mathrm{H}, \mathrm{s})$, $0.09(3 \mathrm{H}, \mathrm{s}), 0.94(9 \mathrm{H}, \mathrm{s}), 1.20-1.94(4 \mathrm{H}, \mathrm{m}), 1.38$ ($1 \mathrm{H}, \mathrm{dd}, J 5.5$
and 1.0$), 2.21-2.37(2 \mathrm{H}, \mathrm{m}), 2.38(1 \mathrm{H}, \mathrm{dd}, J 13.8$ and 6.6$), 3.78$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.10(1 \mathrm{H}, \mathrm{brt}, J 3.0), 4.25(1 \mathrm{H}, \mathrm{dd}, J 6.6$ and 2.7), 7.35-7.48 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.65-7.70 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); δ_{C} $-4.8,-4.7,17.75,18.0,25.7,29.2,45.8,52.4,65.7,68.45,74.15$, 128.3, 128.4, 130.6, 135.4, 169.9 and 172.1.

Radical cyclisation of compound 24b

Following the general procedure, $\mathbf{2 4 b}$ ($307 \mathrm{mg}, 0.64 \mathrm{mmol}$) was treated twice with $\mathrm{Bu}_{3} \mathrm{SnH}(242 \mathrm{mg}, 0.83 \mathrm{mmol})$ and AIBN ($11 \mathrm{mg}, 0.06 \mathrm{mmol}$) in toluene and the crude material was chromatographed on silica gel [hexane-AcOEt (10:1)]. The first fraction gave methyl (IS,3R,4R,5R)-7-benzoyl-3-(tert-butyldimethylsilyloxy)-5-methyl-7-azabicyclo[2.2.1]heptane-1carboxylate 28b ($105 \mathrm{mg}, 41 \%$) as an essentially single isomer, $\mathrm{mp} 82-83{ }^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, $65.5 ; \mathrm{H}, 8.3$; N, 3.7. $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{Si}$ requires C, $65.5 ; \mathrm{H}, 8.2 ; \mathrm{N}, 3.5 \%$); $[\alpha]_{\mathrm{D}}^{24}$ $-11.2(c 0.28, \mathrm{EtOH}) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1740$ and $1650 ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz})-0.02(3 \mathrm{H}, \mathrm{s}), 0.01(3 \mathrm{H}, \mathrm{s}), 0.84(9 \mathrm{H}, \mathrm{s}), 1.05(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $7.1,5-\mathrm{Me}), 1.40(1 \mathrm{H}$, dd, $J 12.5$ and 3.5), $1.83(1 \mathrm{H}$, ddd, $J 12.0$, 4.7 and 3.2), $2.09(1 \mathrm{H}, \mathrm{dd}, J 12.0$ and 8.6$), 2.63-2.78(2 \mathrm{H}, \mathrm{m})$, 3.74 ($1 \mathrm{H}, \mathrm{d}, J 4.7,4-\mathrm{H}$), 3.79 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.26 (1 H , ddd, $J 9.9$, 4.7 and $3.5,3-\mathrm{H}), 7.38-7.52(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.62-7.69(2 \mathrm{H}, \mathrm{m}$, ArH) [the spectrum also exhibited a small doublet at $\delta 0.97$ (J 7.0) due to the 5 -methyl group of the ($5 S$)-isomer of 28 b]; δ_{C} $-5.0,-4.8,17.9,20.4,25.7,28.7,40.9,41.5,52.35,68.7,70.5$, $71.4,128.4,128.6,131.4,134.5,171.0$ and 172.2. The second fraction gave methyl (2S,4R)-1-benzoyl-4-(tert-butyldimethyl-silyloxy)-2-(prop-2-enyl)pyrrolidine-2-carboxylate $30(81 \mathrm{mg}$, 32%) as an oil (Found: $\mathrm{M}^{+}, 403.2151 . \mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{Si}$ requires $M, 403.2178) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1735$ and $1635 ; \delta_{\mathrm{H}}(60 \mathrm{MHz})$ $0.00,0.10$ (total 6 H, both s), $0.86(9 \mathrm{H}, \mathrm{s}), 2.05-2.3(2 \mathrm{H}, \mathrm{m}), 2.73$ $(1 \mathrm{H}, \mathrm{dd}, J 14$ and 6.5$), 3.0-3.9(3 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.50$ (1 H , quintet, $J 7$), $5.0-5.4(2 \mathrm{H}, \mathrm{m}), 5.5-6.3(1 \mathrm{H}, \mathrm{m})$ and $7.2-7.6$ ($5 \mathrm{H}, \mathrm{m}$). The third fraction gave methyl (1S,5R, 6 R)-8-benzoyl-6-(tert-butyldimethylsilyloxy)-8-azabicyclo[3.2.1]octane-1carboxylate 29b ($14 \mathrm{mg}, 5 \%$) as an oil (Found: $\mathrm{M}^{+}, 403.2195$. $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{Si}$ requires $M, 403.2178$); $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{1} 1740$ and $1640 ; \delta_{\mathrm{H}}(300 \mathrm{MHz})$ (as a mixture of two rotamers) 0.04 , 0.09 (total 6 H , both s), $0.84(9 \mathrm{H}$, s, for the minor rotamer), 0.88 ($9 \mathrm{H}, \mathrm{s}$, for the major rotamer), $1.20-2.75(8 \mathrm{H}, \mathrm{m}), 1.78(1 \mathrm{H}, \mathrm{dd}$, $J 13.0$ and 4.4 , for the major rotamer), $2.70(1 \mathrm{H}$, ddd, $J 13.0,10.5$ and 1.0 , for the major rotamer), $3.70(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$ for the minor rotamer), 3.75 ($3 \mathrm{H}, \mathrm{s}$, OMe for the major rotamer), 4.06-4.11 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 4.74 (1 H , ddd, $J 10.5,6.3$ and $4.4,6-\mathrm{H}$), $7.37-7.55$ (5 H for the major rotamer and 3 H for the minor rotamer, m , ArH) and 7.72-7.78 (2 H , for the minor rotamer, m, ArH); δ_{C} $-5.1,-4.7,17.5,17.9,25.7,26.7,29.4,43.25,52.3,62.5,64.8$, $70.3,127.6,128.5,130.5,135.7,170.3$ and 172.6 .

Acknowledgements

The authors are grateful to the Ministry of Education, Science and Culture of Japan for financial support.

References

1 M. D. Bachi and C. Hoornaert, Tetrahedron Lett., 1981, 22, 2689; M. D. Bachi and C. Hoornaert, Tetrahedron Lett., 1981, 22, 2693; M. D. Bachi and C. Hoornaert, Tetrahedron Lett., 1982, 23, 2505 ; D. J. Hart and Y.-M. Tsai, J. Am. Chem. Soc., 1982, 104, 1430; D. A. Burnett, J.-K. Choi, D. J. Hart and Y.-M. Tsai, J. Am. Chem. Soc., 1984, 106, 8201; D. J. Hart and Y.-M. Tsai, J. Am. Chem. Soc., 1984, 106, 8209; J.-K. Choi and D. J. Hart, Tetrahedron, 1985, 41, 3959; J. M. Dener and D. J. Hart, Tetrahedron, 1988, 44, 7037; J.-K. Choi, D.-C. Ha, D. J. Hart, C.-S. Lee, S. Ramesh and S. Wu, J. Org. Chem., 1989, 54, 279; A. L. J. Beckwith and D. R. Boate, Tetrahedron Lett., 1985, 26, 1761.
2 V. Snieckus, J.-C. Cuevas, C. P. Sloan, H. Liu and D. P. Curran, J. Am. Chem. Soc., 1990, 112, 896; D. P. Curran, A. C. Abraham and H. Liu, J. Org. Chem., 1991, 56, 4335.

3 D. Denenmark, T. Winkler, A. Waldner and A. D. Mesmaeker, Tetrahedron Lett., 1992, 33, 3613.
4 T. Cohen, C. H. McMullen and K. Smith, J. Am. Chem. Soc., 1968, 90, 6866.
5 L. Friedman and H. Shechter, Tetrahedron Lett., 1961, 238; D. Elad and J. Sinnreich, Tetrahedron, 1968, 24, 4509; H. Aoyama and Y. Arata, J. Org. Chem., 1987, 52, 4639; A. Azzouzi, M. Dufour, J.-C. Gramain and R. Remuson, Heterocycles, 1988, 27, 133; H. Ishibashi, N. Nakamura, T. Sato, M. Takeuchi and M. Ikeda, Tetrahedron Lett., 1991, 32, 1725; T. Sato, N. Nakamura, K. Ikeda, M. Okada, H. Ishibashi and M. Ikeda, J. Chem. Soc., Perkin Trans. I, 1992, 2399; T. Sato, N. Machigashira, H. Ishibashi and M. Ikeda, Heterocycles, 1992, 33, 139.
6 For a preliminary account of a portion of this work, see T. Sato, T. Mori, T. Sugiyama, H. Ishibashi and M. Ikeda, Heterocycles, 1994, 37, 245.
7 P. N. Confalone, E. M. Huie, S. S. Ko and G. M. Cole, J. Org. Chem., 1988, 53, 482.
8 For vicinal coupling constants in bicyclo[2.2.1]heptane systems, see A. P. Marchand, Stereochemical Applications of NMR Studies in Rigid Bicyclic Systems, Verlag Chemie International Inc., Deerfield Beach, 1982, ch. 4.
9 J. von Braun and K. Wiessbach, Ber., 1930, 63, 489.
10 K. Soai, H. Oyamada, M. Takase and A. Ookawa, Bull. Chem. Soc. Jpn., 1984, 57, 1948.
11 J. Tsuji and K. Ohno, Tetrahedron Lett., 1965, 3969.

12 D. L. Flynn, R. E. Zelle and P. A. Grieco, J. Org. Chem., 1983, 48, 2424; A. Giovannini, D. Savoia and A. Umani-Ronchi, J. Org. Chem., 1989, 54, 228.
13 H. C. Brown and S. Krishnam, J. Am. Chem. Soc., 1973, 95, 1669; M. J. Fisher and L. E. Overman, J. Org. Chem., 1990, 55, 1447; C. Pedregal, J. Ezquerra, A. Escribano, M. C. Carreno and J. L. G. Ruano, Tetrahedron Lett., 1994, 35, 2053.

14 R. P. Polniaszek, S. E. Belmont and R. Alvarez, J. Org. Chem., 1990, 55, 215.
15 A few examples of the intramolecular 1,6-hydrogen atom transfer by an aryl radical have been reported: S. H. Pines, R. M. Purick, R. A. Reamer and G. Gal, J. Org. Chem., 1978, 43, 1337; reference 3.

16 M. E. Jung and J. Gerray, J. Am. Chem. Soc., 1991, 113, 224, and refs. therein.
17 J. P. Greenstein and M. Winitz, Chemistry of the Amino Acids, Wiley, New York, 1962, vol. 2, p. 927; J. Kohn and R. Langer, J. Am. Chem. Soc., 1987, 109, 817.
18 F. C. Chang and N. F. Wood, Tetrahedron Lett., 1964, 2969.
19 J. Inanaga, K. Hirata, H. Saeki, T. Katsuki and M. Yamaguchi, Bull. Chem. Soc. Jpn., 1979, 52, 1989.

Paper 5/01532D
Received 13th March 1995 Accepted 23rd March 1995

